Formal Methods for Hopfield-Like Networks
نویسندگان
چکیده
منابع مشابه
Formal methods for Hopfield-like networks.
Building a meaningful model of biological regulatory network is usually done by specifying the components (e.g. the genes) and their interactions, by guessing the values of parameters, by comparing the predicted behaviors to the observed ones, and by modifying in a trial-error process both architecture and parameters in order to reach an optimal fitness. We propose here a different approach to ...
متن کاملWarm start by Hopfield neural networks for interior point methods
Hopfield neural networks and interior point methods are used in an integrated way to solve linear optimization problems. The Hopfield network gives warm start for the primal–dual interior point methods, which can be way ahead in the path to optimality. The approaches were applied to a set of real world linear programming problems. The integrated approaches provide promising results, indicating ...
متن کاملHopfield Neural Networks for Timetabling: Formulations, Methods, and Comparative Results
This paper considers the use of discrete Hopfield neural networks for solving school timetabling problems. Two alternative formulations are provided for the problem: a standard Hopfield-Tank approach, and a more compact formulation which allows the Hopfield network to be competitive with swapping heuristics. It is demonstrated how these formulations can lead to different results. The Hopfield n...
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولNonlinear factorization in sparsely encoded Hopfield-like neural networks
The problem of binary factorization of complex patterns in recurrent Hopfieldlike neural network was studied both theoretically and by means of computer simulation. The number and sparseness of factors mixed in patterns crucially determines the ability of an autoassociator to perform a factorization. Basing on experimental data on memory and learning one may suggest, that there exists a neural ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Biotheoretica
سال: 2013
ISSN: 0001-5342,1572-8358
DOI: 10.1007/s10441-013-9169-5